

PROCESS COMMERCIALIZATION LANDSCAPE FOR FORWARD OSMOSIS

August 2015

Erik Desormeaux erikd@porifera.com (510) 648-5767 3502 Breakwater Court Hayward, CA, USA

Porifera Introduction and Overview

- Founded in 2009 in Hayward, CA, USA.
- Porifera Forward Osmosis (PFO) technology developed for US military
- PFO systems for product concentration, near ZLD, and water reuse
- Sold elements and pilot systems in Europe, Middle East, Australia & the Americas since November 2013 product launch.
- Mass manufacture membrane in Korea; systems in US

PFO-100 element (7m²)

PFO module (42-70 m²)

5000-10,000 gpd PFO pilot system (20-40 m3/day) (with two 42 m² modules)

At the Heart of the Water-Energy-Food Nexus

What are the perceived challenges for FO?

- 1) FO Membrane performance:
 - Cost and footprint
- 2) Draw chemistry & recovery:
 - Energy use

Perceived Challenges ☑ Check these off your list!!!!

1) FO Membrane performance:

Cost and footprint

2) Draw chemistry & recovery:

Energy use

Over 10 pilot size systems operating successfully worldwide that can compete on cost, footprint & energy use

Key Remaining Challenges are Market Based

- What is FO good for?
- Is FO ready for broad commercialization?
- What are FO Target markets?

Customer operated pilot in Asia

What does FO do better than other technologies?

Oil Field Waste Conc. 4X

HIGH FOULING

 Fewer treatment steps and a new tool to solve difficult problems

14 X Concentrated

For Which Industries is FO a Good Fit?

FOOD & BEVERAGE

Product Concentration
Waste Concentration
& Reuse
Water Recycling

Why consider FO? New products, low cost, sustainability, & higher purity

OIL & GAS

Unique drilling fluid chemistry and reuse ZLD concentration of oilfield brines
Small footprint offshore treatment

Why consider FO? High temperatures, reliability, low cost, small footprint

INDUSTRY & MINING

Product concentration
High purity processing
Waste concentration
and reuse

Why consider FO? High temperatures, new products, low cost, small footprint

WATER & AGRICULTURE

Ultimate technology for potable reuse

Unique water reuse solutions for every aspect of society.

Why consider FO?
Purity for POTABLE,
IRRIGATION, &
RESDIDENTIAL REUSE

Key Innovations: Why is FO more attractive now than 2 years ago?

PFO Membrane Outperforms Competition

		Specific flux	RSF	Structural	
Supplier	flux [LMH]	[LMH/bar]	[g/l]	parameter S [um]	Source
Aquaporin Flat Sheet	7	0.15	0.29	N/A	Data Sheet, SIWW 2014
					T. Cath et al. Desalination 2012,
HTI CTA	12	0.26	0.58	500	doi:10.1016/j.desal.2012.07.005
HTI TFC	17.5	0.37	0.41	N/A	Data sheet, Weftec 2013
					T. Cath et al. Desalination 2012,
Oasys TFC	30	0.64	1.67	375	doi:10.1016/j.desal.2012.07.005
Porifera	33	0.70	0.40	215	Data Sheet, SIWW 2014

- Highest flux & highest rejection commercial FO membrane according to NASA, customers, and universities
- Highest Temp., COD, Oil & Grease limits for polymeric membranes:
 - Up to 80°C
 - Success with feeds >10,000 mg/L COD and >100 ppm oils and greases

Spiral Wound Elements: non-ideal flow paths for FO

Best FO Packaging and Systems

- Ideal flow paths result in >95% system efficiency
- Only spacerless element for high solids & high algae applications
- Only small footprint submersible, flat sheet element for MBR and submerged applications

Element Related Scale Up Efficiency

What can Porifera do with these elements?

Parameter	Spiral CTA FO	Porifera FO		
Elements	44	10		
Tapered Stages	3	2		
Pressure drop	>30 psi	~12 psi		
Flow	10-20 times higher			

Baffled FO Element Stacks:

- Allows constant surface velocity across entire membrane area.
- Engineered to any recovery at high efficiency & low headloss.
- Co-current or counter-current

Porifera's first baffled Stack

How do recent FO innovations affect the bottom line?

Reduced footprint, CAPEX, OPEX and Life Cycle costs for a 30,000 m3/day system.

3 Years Ago

Spiral wound element + CTA membrane

Membrane

Spiral wound element + PFO membrane

Element

PFO element + CTA membrane

Current

PFO membrane + PFO element

Note: Compares FO system only; does not include CIP system, containers, strainers, pretreatment or other ancillary systems

FO Market Today

Example 1:

Oilfield Fracking Waste Concentration for minimal liquid discharge

- Feed: mixed oil well waste (~50,000 ppm TDS) with high concentrations of COD, scalants, and inorganic salts
- Demonstrated concentration of challenging feed to 200,000 ppm TDS without irreversible membrane degradation

Initial Feed ~4x Concentrate

Membrane coupon before testing

Membrane coupon after testing

Membrane coupon after osmotic backflush

Lowest Cost for High TDS Applications that RO Cannot Treat

Life Cycle Cost per m3 of clean water reused (\$)

Assumes 20 Year Analysis & 7% interest rate for Oil Field Waste Concentration, Disposal, and Water Reuse via a turn-key solution including containers, pretreatment, & ancillary systems

Broad Market Commercialization? FO+RO will compete with UF+RO

Equipment Only Unit Cost Comparison

63 m² PFO modules

PFO brings FO to mainstream municipal projects

480 m2 modules in development

Target Markets:

ZLD NOW, REUSE TOMORROW

Conclusions

- What is FO good for?
 - High fouling
 - High quality
 - High TDS
- Is FO ready for broad commercialization:
 - Yes. Recent innovations greatly reduce cost and footprint:
 - PFO membranes and elements most efficient on the market
 - Use of salt as the draw achieves low energy
- What are FO target markets?
 - Best bang for your buck:
 - TODAY: Near ZLD
 - TOMORROW: Water reuse

Why is FO ideal for Direct Potable Reuse?

IDA Conference Presentation

S-06 Emerging Technologies: Forward Osmosis and Osmotic Processes [Part 2] Wednesday, September 02, 2015 @ 2:30 PM - 3:00 PM

Questions?

Appendix

Porifera FO for Water Reuse

Aerospace and Valuable Graywaters
– simple, high purity, high recovery,
low maintenance solution

Food and beverage – multiple ideal applications

Industrial – challenging wastes with oils, VOC's, COD

Lower cost, higher purity

IPR & DPR - Fail-safe pathogen and emerging contaminant removal

PFO Recycler: FO+RO System for Low TDS

PFO Concentrator: Standard FO+RO System with NaCl Draw for High TDS and Near ZLD

